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Automatic mass detection via visual recognition
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Mass detection via deep learning

Deep learning do this tasks
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Breast cancer screening : 

2D DM and 3D DBT

� 3D DBT clearly shows breast cancers

2D DM 3D DBT

Mass

2D DM
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Latent feature representation 

with depth directional long-term recurrent learning

Related publication: 

Latent feature representation with depth directional long-term recurrent 

learning for breast masses in digital breast tomosynthesis, Yong Man Ro 

etal. Medical Physics, revising, 2016
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Overview of the proposed method

� Variation of depth directional texture patterns

� Slices of masses show similar texture patterns, while FPs show different

texture patterns among slices (as a medical doctor’s diagnosis)

�Because FPs are occurred when tissues in different depth are overlapped

Example of  breast cancer 

screening using DBT [2]Mass
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� Encoding scheme for masses via the proposed latent feature

representation
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Latent feature representation with depth directional long-term recurrent learning for breast masses in 

digital breast tomosynthesis, Yong Man Ro etal. Medical Physics, revising, 2016
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� Central slice directional learning using depth directional long-term

recurrent learning

� Modelling the symmetric pattern of slice feature representations of masses

with respect to the central slice

9/29

Structure of  LSTM layers

Latent feature representation with depth directional long-term recurrent learning for breast masses in 

digital breast tomosynthesis, Yong Man Ro etal. Medical Physics, revising, 2016
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Visualization of activations on the learned LSTM layer
10/29

Masses

FPs

Evolution of  states of  three gates and a memory cell and an output (i.e., 

latent feature representation) for 4 LSTM cells at last LSTM layer

Slice index



Prof Yong Man Ro

Experiment 1

� Classification performance comparisons with existing methods

11/29

Feature group AUC

Hand-crafted features [1] 0.847

Slice feature representation 0.871

Proposed latent feature representation 0.919

[1] Kim D H, Kim S T and Ro Y M 2015 Improving mass detection using combined feature representations from projection views and reconstructed volume of DBT and boosting based 

classification with feature selection Phys. Med. Biol. 60 8809
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Bilateral analysis:

Latent feature representation with 3D multi-view CNN

Related publication:

Latent feature representation with 3-D Multi-view Convolutional Neural Network for 

Bilateral Analysis in Digital Breast Tomosynthesis ,”, Yong Man Ro  IEEE ICASSP, 

2016
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Clinical practice: Bilateral analysis

� Bilateral analysis for breast cancer screening and diagnosis

� Mass is an asymmetric density which is visible on two projections (CC and MLO)

� Asymmetry between the left and right breast of a given subject is an important sign

used by radiologists to diagnose breast cancer

Example of  reconstructed slices including 

a mass (white circled)

RMLO LMLO

Asymmetric density 
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Conventional: hand-crafted features in DBT

� Measuring the bilateral dissimilarity between two VOIs in left

breast and right breast [1]

� Texture dissimilarity (i.e., Sum of squared differences (SSD) measure)

� Dissimilarity of intensity distribution (i.e., Histogram correlation)

� Dissimilarity of mass characteristics between VOIs (i.e., Absolute difference of single

features)

� Limitation

� Bilateral characteristics are abstract

� Due to the subtle characteristics 

of masses in bilateral analysis,

it is hard to design effective

hand-crafted features
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(transform)
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Estimating dissimilarity 

between two VOIs

Illustration of  hand-crafted 

bilateral feature extraction

[1]  “Feature extraction from bilateral dissimilarity in digital breast tomosynthesis reconstructed volume,” IEEE international conference on image processing, 2015.
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Bilateral analysis with multi-view 3D CNN

� 3D CNN learns tissue structure in volume

� Multi-view fusion network learns different representation of VOIs as input

and learns features individually

“Latent feature representation with 3-d multi-view deep convolutional neural network for bilateral analysis in digital breast tomosynthesis,” IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), 2016.
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Experimental results

Comparisons of  ROC curves of  FP reduction using hand-crafted 

features and proposed latent bilateral feature representation

“Feature extraction from bilateral dissimilarity in digital breast tomosynthesis reconstructed volume,” IEEE international conference on image processing, 2015.
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Hand-crafted features [1] (AUC=0.826 ± 0.013)

Latent bilateral features (AUC=0.847 ± 0.012) t-SNE feature visualization
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